Separation of variables for the D n type periodic Toda lattice

نویسنده

  • Vadim B. Kuznetsov
چکیده

We prove separation of variables for the most general (Dn type) periodic Toda lattice with 2 × 2 Lax matrix. It is achieved by finding proper normalisation for the corresponding Baker-Akhiezer function. Separation of variables for all other periodic Toda lattices associated with infinite series of root systems follows by taking appropriate limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Variables and Vacuum Structure of Massive N=2 Susy Qcd

We show how the method of separation of variables can be used to construct integrable models corresponding to curves describing vacuum structure of N = 2 SUSY Yang-Mills theories. In particular, we consider hyperelliptic curves of N = 2 SUSY QCD with even number of hypermultiplets with pairwise coinciding masses. We show that in the SU(3) case the curves correspond to the generalisations of the...

متن کامل

Global action-angle variables for the periodic Toda lattice

In this paper we construct global action-angle variables for the periodic Toda lattice.

متن کامل

Nekhoroshev theorem for the periodic Toda lattice.

The periodic Toda lattice with N sites is globally symplectomorphic to a two parameter family of N-1 coupled harmonic oscillators. The action variables fill out the whole positive quadrant of R(N-1). We prove that in the interior of the positive quadrant as well as in a neighborhood of the origin, the Toda Hamiltonian is strictly convex and therefore Nekhoroshev's theorem applies on (almost) al...

متن کامل

Separation of Variables and Vacuum Structure of N = 2 Susy Qcd

We show how the method of separation of variables can be used to construct integrable models corresponding to curves describing vacuum structure of four-dimensional N = 2 SUSY Yang-Mills theories. We use this technique to construct models corresponding to SU(N) Yang-Mills theory with Nf < 2N matter hypermultiplets by generalising the periodic Toda lattice. We also show that some special cases o...

متن کامل

Surfaces associated with theta function solutions of the periodic 2D-Toda lattice

The objective of this paper is to present some geometric aspects of surfaces associated with theta function solutions of the periodic 2D-Toda lattice. For this purpose we identify the (N − 1)-dimensional Euclidean space with the su(N) algebra which allows us to construct the generalized Weierstrass formula for immersion for such surfaces. The elements characterizing surface like its moving fram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997